On Caputo type sequential fractional differential equations with nonlocal integral boundary conditions

نویسندگان

  • Ahmed Alsaedi
  • Sotiris K Ntouyas
  • Ravi P Agarwal
  • Bashir Ahmad
چکیده

*Correspondence: [email protected] 1Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia Full list of author information is available at the end of the article Abstract This paper investigates a boundary value problem of Caputo type sequential fractional differential equations supplemented with nonlocal Riemann-Liouville fractional integral boundary conditions. Some existence results for the given problem are obtained via standard tools of fixed point theory and are well illustrated with the aid of examples. Some special cases are also presented. MSC: 34A08; 34B15

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solution for boundary value problem of fractional order with approximate Integral and derivative

Approximating the solution of differential equations of fractional order is necessary because fractional differential equations have extensively been used in physics, chemistry as well as engineering fields. In this paper with central difference approximation and Newton Cots integration formula, we have found approximate solution for a class of boundary value problems of fractional order. Three...

متن کامل

System of fuzzy fractional differential equations in generalized metric space

In this paper, we study the existence of integral solutions of fuzzy fractional differential systems with nonlocal conditions under Caputo generalized Hukuhara derivatives. These models are considered in the framework of completegeneralized metric spaces in the sense of Perov. The novel feature of our approach is the combination of the convergentmatrix technique with Schauder fixed point princi...

متن کامل

‎Numerical solution of nonlinear fractional Volterra-Fredholm integro-differential equations with mixed boundary ‎conditions‎

The aim of this paper is solving nonlinear Volterra-Fredholm fractional integro-differential equations with mixed boundary conditions‎. ‎The basic idea is to convert fractional integro-differential equation to a type of second kind Fredholm integral equation‎. ‎Then the obtained Fredholm integral equation will be solved with Nystr"{o}m and Newton-Kantorovitch method‎.  ‎Numerical tests for demo...

متن کامل

Positive Solutions for Nonlinear Caputo Type Fractional q-Difference Equations with Integral Boundary Conditions

Since Al-Salam [1] and Agarwal [2] introduced the fractional q-difference calculus, the theory of fractional q-difference calculus itself and nonlinear fractional q-difference equation boundary value problems have been extensively investigated by many researchers. For some recent developments on fractional q-difference calculus and boundary value problems of fractional q-difference equations, s...

متن کامل

Boundary value problems for nonlinear fractional differential equations with integral and ordinary-fractional flux boundary conditions

In this paper, we consider a new class of boundary value problems of Caputo type fractional differential equations supplemented with classical/nonlocal Riemann-Liouville integral and flux boundary conditions and obtain some existence results for the given problems. The flux boundary condition x′(0) = b cDβx(1) states that the ordinary flux x′(0) at the left-end point of the interval [0, 1] is p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015